Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 906
Filtrar
1.
Materials (Basel) ; 17(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612191

RESUMO

Corrosion processes at cut edges of galvanized steels proceed as highly localized electrochemical reactions between the exposed bulk steel matrix and the protective thin metallic coating of a more electrochemically active material. Scanning microelectrochemical techniques can thus provide the spatially resolved information needed to assess the corrosion initiation and propagation phenomena, yet most methods scan cut edge sections as embedded in insulating resin to achieve a flat surface for scanning purposes. In this work, the galvanized coatings on both sides of the material were concomitantly exposed to simulated acid rain while characterizing the cut edge response using SECM and SVET techniques, thereby maintaining the coupled effects through the exposure of the whole system as rather realistic operation conditions. The cut edges were shown to strongly promote oxygen consumption and subsequent alkalization to pH 10-11 over the iron, while diffusion phenomena eventually yielded the complete depletion of oxygen and pH neutralization of the nearby electrolyte. In addition, the cathodic activation of the exposed iron was intensified with a thinner coating despite the lower presence of sacrificial anode, and preferential sites of the attack in the corners revealed highly localized acidification below pH 4, which sustained hydrogen evolution at spots of the steel-coating interface.

2.
Materials (Basel) ; 17(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612175

RESUMO

Dental amalgams have been used by dentists for the restoration of posterior human teeth. However, there have been concerns about the release of mercury from amalgams into the oral cavity. The objective of the present research is to study the effect of titanium (Ti) nanoparticles on the microstructural mechanism of the release of mercury vapor in two commonly used brands of dental amalgam (the Dispersalloy: 11.8% Cu; the Sybralloy: 33% Cu). Ti powder was added to both the Dispersalloy and the Sybralloy in increments of 10 mg up to 80 mg. The addition of Ti powder to both brands of dental amalgam has been found to result in a considerable decrease in Hg vapor release. The decrease in the Hg vapor release due to Ti addition has been explained by the formation of strong Hg-Ti covalent bonds, which reduce the availability of Hg atoms for evaporation. The Ti atoms in excess of the solubility limit of Ti in Hg reside in the grain boundaries, which also reduces the evaporation of Hg from the amalgam. The binding of Hg with Ti via a strong covalent bond also results in a significant improvement in mechanical properties such as Vickers hardness.

3.
Environ Int ; 186: 108565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574403

RESUMO

BACKGROUND: Endocrine disruptors (EDs) have emerged as potential contributors to the development of type-2 diabetes. Perfluorooctane sulfonate (PFOS), is one of these EDs linked with chronic diseases and gathered attention due to its widespread in food. OBJECTIVE: To assess at baseline and after 1-year of follow-up associations between estimated dietary intake (DI) of PFOS, and glucose homeostasis parameters and body-mass-index (BMI) in a senior population of 4600 non-diabetic participants from the PREDIMED-plus study. METHODS: Multivariable linear regression models were conducted to assess associations between baseline PFOS-DI at lower bound (LB) and upper bound (UB) established by the EFSA, glucose homeostasis parameters and BMI. RESULTS: Compared to those in the lowest tertile, participants in the highest tertile of baseline PFOS-DI in LB and UB showed higher levels of HbA1c [ß-coefficient(CI)] [0.01 %(0.002 to 0.026), and [0.06 mg/dL(0.026 to 0.087), both p-trend ≤ 0.001], and fasting plasma glucose in the LB PFOS-DI [1.05 mg/dL(0.050 to 2.046),p-trend = 0.022]. Prospectively, a positive association between LB of PFOS-DI and BMI [0.06 kg/m2(0.014 to 0.106) per 1-SD increment of energy-adjusted PFOS-DI was shown. Participants in the top tertile showed an increase in HOMA-IR [0.06(0.016 to 0.097), p-trend = 0.005] compared to participants in the reference tertile after 1-year of follow-up. DISCUSSION: This is the first study to explore the association between DI of PFOS and glucose homeostasis. In this study, a high baseline DI of PFOS was associated with a higher levels of fasting plasma glucose and HbA1c and with an increase in HOMA-IR and BMI after 1-year of follow-up.


Assuntos
Ácidos Alcanossulfônicos , Glicemia , Fluorocarbonos , Homeostase , Ácidos Alcanossulfônicos/sangue , Humanos , Fluorocarbonos/sangue , Masculino , Feminino , Idoso , Glicemia/análise , Pessoa de Meia-Idade , Índice de Massa Corporal , Diabetes Mellitus Tipo 2 , Disruptores Endócrinos , Dieta/estatística & dados numéricos , Idoso de 80 Anos ou mais , Estudos Prospectivos , Poluentes Ambientais/sangue
4.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612065

RESUMO

It has been recently demonstrated that laser micromachining of magnetoactive elastomers is a very convenient method for fabricating dynamic surface microstructures with magnetically tunable properties, such as wettability and surface reflectivity. In this study, we investigate the impact of the micromachining process on the fabricated material's structural properties and its chemical composition. By employing scanning electron microscopy, we investigate changes in size distribution and spatial arrangement of carbonyl iron microparticles dispersed in the polydimethylsiloxane (PDMS) matrix as a function of laser irradiation. Based on the images obtained by a low vacuum secondary electron detector, we analyze modifications of the surface topography. The results show that most profound modifications occur during the low-exposure (8 J/cm2) treatment of the surface with the laser beam. Our findings provide important insights for developing theoretical models of functional properties of laser-sculptured microstructures from magnetoactive elastomers.

5.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612093

RESUMO

Properties such as lower melting temperature, good tensile strength, good reliability, and well creep resistance, together with low production cost, make the system Bi-Sn an ideal candidate for fine soldering in applications such as reballing or reflow. The first objective of the work was to determine the thermodynamic quantities of Bi and Sn using the electromotive force measurement method in an electrolytic cell (Gibbs' enthalpies of the mixture, integral molar entropies, and the integral molar excess entropies were determined) at temperatures of 600 K and 903 K. The second objective addressed is the comprehensive characterization of three alloy compositions that were selected and elaborated, namely Bi25Sn75, Bi50Sn50, and Bi75Sn25, and morphological and structural investigations were carried out on them. Optical microscopy and SEM-EDS characterization revealed significant changes in the structure of the elaborated alloys, with all phases being uniformly distributed in the Bi50Sn50 and Bi75Sn25 alloys. These observations were confirmed by XRD and EDP-XRFS analyses. Diffractometric analysis reveals the prevalence of metallic Bi and traces of Sn, the formation of the Sn0.3Bi0.7, Sn0.95Bi0.05 compounds, and SnO and SnO2 phases.

6.
Front Immunol ; 15: 1369295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650940

RESUMO

Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods: This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results: Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion: Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.


Assuntos
Citocinas , Índice de Gravidade de Doença , Humanos , Citocinas/metabolismo , Feminino , Adulto , Masculino
7.
Cell Rep ; 43(4): 113985, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517890

RESUMO

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38532601

RESUMO

AIM: This article describes the use of graphite(Gr) and boron carbide (B4C) as multiple nanoparticle reinforcements in LM25 aluminum alloy. Because boron carbide naturally absorbs neutron radiation, aluminium alloy reinforced with boron carbide metal matrix composite has gained interest in nuclear shielding applications. The primary goal of the endeavor is to create composite materials with high wear resistance, high microhardness, and high ultimate tensile strength for use in nuclear applications. BACKGROUND: Science and Technology have brought a vast change to human life. The human burden has been minimized by the use of innovation in developing new and innovative technologies. To improve the quality of human life, fresh, lightweight, and creative materials are being used, which play a vital role in science and technology and reduce the human workload. Composite materials made of metal are being used because they are lightweight. Neutron absorption, high ultimate strength, high wear resistance, high microhardness, high thermal and electrical conductivity, high vacuum environmental resistance, and low coefficient of thermal expansion under static and dynamic conditions are all demands for the hybrid metal matrix composites utilized in nuclear applications. OBJECTIVE: • Stir casting is used to create the novel LM 25 aluminum alloy/graphite and boron carbide hybrid nanocomposites. • The mechanical properties such as ultimate tensile strength, yield strength, percentage of elongation, microhardness, and wear behavior are calculated. • Three analyses are performed: microstructure, worn surface analysis, and fracture analysis of the tensile specimen. METHOD: • Stir casting process< • Tensile, Hardness, Wear Test • Materials Characterization - FESEM, Optical Microscopy, EDS< Results: The mechanical properties values are 308.76 MPa, 293.51 MPa, 7.8, 169.2 VHN, and 0.01854mm3/m intended for ultimate tensile strength, yield strength, percentage of elongation, microhardness, and wear behavior, respectively. This implies that the synthesized composite may be used in nuclear applications successfully. CONCLUSION: The subsequent explanation was drawn from this investigative work: • The LM 25/B4C/Gr hybrid nanocomposite was successfully manufactured by employing the stir casting technique. For nuclear shielding applications, these composites were prepared with three different weight percentages of nanoparticle reinforcements in 2,4,6% Boron carbide and constant 4 wt.% graphite. • The microhardness values of the three-hybrid nanocomposite fabricated castings were determined to be 143.4VHN, 156.7VHN, and 169.2VHN, respectively. • The hybrid nano composite's microstructure revealed that the underlying LM 25 aluminum alloy matrix's finegrained, evenly dispersed nanoparticles of graphite and boron carbide were present.

• The microtensile test was carried out and it was found that the ultimate tensile strength, yield strength and percentage of elongation values are 281.35MPa, 296.52MPa, 308.76MPa, 269.43, 274.69, 293.51 and 3.4, 5.7, 7.8 respectively.

• Deformation caused the hybrid LM 25/B4C/Gr nanocomposite to fracture in ductile mode. Dimples and cavities are seen in the fracture because of the nanoparticle reinforcements and the matrix's tight connection.

• The wear loss of nanocomposite based on the input parameter applied load, sliding velocity and sliding distance values are 0.02456, 0.02189, 0.01854, 0.02892, 0.02586, 0.02315 and 0.02682, 0.02254, 0.02015 mm3/m, respectively.

• The LM 25 alloy's elemental analysis displays the aluminum alloy phase as the largest peak and the remaining elements as smaller peaks; also, the spectral analysis reveals the presence of boron (B), graphite (C), silicon, and ferrous in the aluminum alloy LM 25.

• Through worn surface FESEM investigation, it was shown that under sliding and high load situations, debris, delamination, and groove develop. Further rupture, fine, and continuous grooves were seen when low stress and sliding circumstances were applied to the LM 25/B4C/Gr and stir cast specimen. This result implies the presence of mild adhesive and delamination wear processes.

.

9.
Curr Issues Mol Biol ; 46(3): 2620-2643, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534782

RESUMO

Systematic evaluation of 80 history and 40 history findings diagnosed 1261 patients with Ehlers-Danlos syndrome (EDS) by direct or online interaction, and 60 key findings were selected for their relation to clinical mechanisms and/or management. Genomic testing results in 566 of these patients supported EDS relevance by their differences from those in 82 developmental disability patients and by their association with general rather than type-specific EDS findings. The 437 nuclear and 79 mitochondrial DNA changes included 71 impacting joint matrix (49 COL5), 39 bone (30 COL1/2/9/11), 22 vessel (12 COL3/8VWF), 43 vessel-heart (17FBN1/11TGFB/BR), 59 muscle (28 COL6/12), 56 neural (16 SCN9A/10A/11A), and 74 autonomic (13 POLG/25porphyria related). These genes were distributed over all chromosomes but the Y, a network analogized to an 'entome' where DNA change disrupts truncal mechanisms (skin constraint, neuromuscular support, joint vessel flexibility) and produces a mirroring cascade of articular and autonomic symptoms. The implied sequences of genes from nodal proteins to hypermobility to branching tissue laxity or dysautonomia symptoms would be ideal for large language/artificial intelligence analyses.

10.
Sci Total Environ ; 923: 171351, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432370

RESUMO

Cigarette smoke contains many chemicals that are harmful to both smokers and non-smokers. Breathing just a little cigarette smoke can be harmful. There are >7000 chemicals in cigarette smoke, at least 250 are known to be harmful and many of them can cause cancer. Currently, many studies reported the types of harmful organic compounds in cigarette smoke; instead, there are almost no works that describe the presence of inorganic compounds. In this work, a cost-effective self-made passive sampler (SMPS) was tested as a tool to collect different types of particulate matter (PM) from cigarette smoke containing metals as hazardous compounds (HCs). To determine the nature of the metals, nonmetals and metalloids as HCs, a direct qualitative analysis of the particulate matter (PM) was conducted without developing any special sample preparation procedure. For that, non-invasive elemental (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) and molecular (Raman microscopy) micro-spectroscopic techniques were used. Thanks to this methodology, it was possible to determine in deposited PM, the presence of metals such as Fe, Cr, Ni, Ti, Co, Sn, Zn, Ba, Al, Cu, Zr, Ce, Bi, etc. most of them as oxides but also embedded in different clusters with sulfates, aluminosilicates, even phosphates.


Assuntos
Fumar Cigarros , Metaloides , Humanos , Metaloides/análise , Metais , Material Particulado/análise , Espectrometria por Raios X
11.
Chemosphere ; 354: 141691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484999

RESUMO

Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/toxicidade , Antibacterianos/química , Staphylococcus epidermidis , Bacillus cereus , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124103, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447445

RESUMO

This work presents the characterization results of Middle Iron Age pottery fragments excavated in Van Fortress, the historical capital of the Urartu Kingdom, located on the eastern coast of Lake Van in Turkey. A multi-analytical approach combining optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR) has been employed to investigate the mineralogical composition of ceramics. Micro-Raman spectrometer was also used for the characterization of the pigments used for decoration. The data collected from the analyses offered information on the minerals that were discovered in the ceramics, as well as the temperature at which the ceramics were fired and the atmosphere that they were exposed to. The existence of hematite suggests that they were subjected to firing in an oxidizing environment, with the exception of one sample, which has a sandwich shape characterized by a red-edge and a black center, indicating exposure to both reducing and oxidative atmospheres during the fire process. The ceramics utilized in this investigation are hypothesized to have been crafted from elemental substances procured from two to three distinct clay origins.

13.
Appl Radiat Isot ; 208: 111308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555847

RESUMO

This study explores the structural and optical qualities of LaCa4O(BO3)3 (LACOB) phosphors doped with Eu3+, Dy3+, and Tb3+ using a microwave-assisted sol-gel technique. It uncovers oxygen-related luminescence defects in LACOB, highlighting emission peaks at 489 and 585 nm for Dy3+, a distinct sharp peak at 611 nm for Eu3+ in the red spectrum, and a notable green emission for Tb3+ due to specific transitions. The photoluminescence (PL) analysis indicates that luminescence is optimized through precise doping, leveraging dipole interactions, and localized resonant energy transfer, which are influenced by dopant concentration and spatial configuration. Temperature studies show emission intensity variations, particularly noticeable below 100 K for Tb3+ doped samples, demonstrating the nuanced balance between thermal quenching and luminescence efficiency. This temperature dependency, alongside the identified optimal doping conditions, underscores the potential of these materials for advanced photonic applications, offering insights into their thermal behavior and emission mechanisms under different conditions.

14.
Restor Dent Endod ; 49(1): e6, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38449501

RESUMO

Objectives: This study aimed to investigate the elemental analysis and microhardness of a bioactive material (Activa) and marginal tooth structure after storage in different media. Materials and Methods: Fifteen teeth received cervical restorations with occlusal enamel and gingival dentin margins using the tested material bonded with a universal adhesive, 5 of them on the 4 axial surfaces and the other 10 on only the 2 proximal surfaces. The first 5 teeth were sectioned into 4 restorations each, then stored in 4 different media; deionized water, Dulbecco's phosphate buffered saline (DPBS), Tris buffer, and saliva. The storage period for deionized water was 24 hours while it was 3 months for the other media. Each part was analyzed by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis for different substrates/distances and the wt% of calcium, phosphorus, silica, and fluoride were calculated. The other 10 teeth were sectioned across the restoration, stored in either Tris buffer or saliva for 24 hours or 3 months, and were evaluated for microhardness of different substrates/areas. Data were analyzed using analysis of variance and Tukey's post hoc test. Results: Enamel and dentin interfaces in the DPBS group exhibited a significant increase in calcium and phosphorus wt%. Both silica and fluoride significantly increased in tooth structure up to a distance of 75 µm in the 3-month-media groups than the immediate group. Storage media did not affect the microhardness values. Conclusions: SEM-EDS analysis suggests an ion movement between Activa and tooth structure through a universal adhesive while stored in DPBS.

15.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474252

RESUMO

Na-V-P-Nb-based materials have gained substantial recognition as cathode materials in high-rate sodium-ion batteries due to their unique properties and compositions, comprising both alkali and transition metal ions, which allow them to exhibit a mixed ionic-polaronic conduction mechanism. In this study, the impact of introducing two transition metal oxides, V2O5 and Nb2O5, on the thermal, (micro)structural, and electrical properties of the 35Na2O-25V2O5-(40 - x)P2O5 - xNb2O5 system is examined. The starting glass shows the highest values of DC conductivity, σDC, reaching 1.45 × 10-8 Ω-1 cm-1 at 303 K, along with a glass transition temperature, Tg, of 371 °C. The incorporation of Nb2O5 influences both σDC and Tg, resulting in non-linear trends, with the lowest values observed for the glass with x = 20 mol%. Electron paramagnetic resonance measurements and vibrational spectroscopy results suggest that the observed non-monotonic trend in σDC arises from a diminishing contribution of polaronic conductivity due to the decrease in the relative number of V4+ ions and the introduction of Nb2O5, which disrupts the predominantly mixed vanadate-phosphate network within the starting glasses, consequently impeding polaronic transport. The mechanism of electrical transport is investigated using the model-free Summerfield scaling procedure, revealing the presence of mixed ionic-polaronic conductivity in glasses where x < 10 mol%, whereas for x ≥ 10 mol%, the ionic conductivity mechanism becomes prominent. To assess the impact of the V2O5 content on the electrical transport mechanism, a comparative analysis of two analogue series with varying V2O5 content (10 and 25 mol%) is conducted to evaluate the extent of its polaronic contribution.


Assuntos
Nióbio , Fosfatos , Fosfatos/química , Vidro/química , Íons , Espectroscopia de Ressonância de Spin Eletrônica , Sódio/química , Cerâmica/química
16.
Adv Virus Res ; 118: 77-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461031

RESUMO

Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.


Assuntos
Reguladores de Crescimento de Plantas , Imunidade Vegetal , Imunidade Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas , Transdução de Sinais , Doenças das Plantas/genética
17.
Microsc Res Tech ; 87(6): 1318-1334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353356

RESUMO

In the study, the achene macromorphological and micromorphological characters of the genus Artemisia distributed in Turkey have been researched with the target of knowing systematically important carpological structures for the examined species. Macro-morphological structures of the achenes including color, shape, dimension, and carpopodium diameter were studied with 100 achenes of 10 specimens per taxa with a Light Microscope. Micro-morphological features of the achenes containing surface ornamentation, anticlinal and periclinal cell walls, epidermal cells, and the presence of secondary structures were examined with a Scanning Electron Microscope. EDS analyses were performed with a SEM. EDS analyses were carried out by selecting the same spot on the sample surface at 80 sec under 30 µm aperture size, with 20 kV acceleration voltage, 8 mm operating distance, high current, and processing time conditions. The color, shape, and dimension of achene have macro-morphologically shown variations. The examined achenes are separated into four shapes; fusiform-oblong, oblong, oblong-ovate, and ovate. Oblong-ovate is the most common type. Achene dimensions range from 0.62 to 2.48 mm in length, and from 0.30 to 1.21 mm in width. Also, carpopodium diameter varies between 0.10 and 0.19 mm. Achene surfaces of the examined taxa are micro-morphologically assessed, and substantial differences are noticeably detected on behalf of the surface structures for instance, surface ornamentation, anticlinal and periclinal cell walls, epidermal cells, and the presence of secondary structures of the achenes. Surface ornamentation is separated into 10 types: irregularly sulcate, regularly sulcate, ruminate, sulcate-scalariform, rugose, favulariate, slightly sulcate, alveolate, tuberculate, and reticulate. A percentage comparison of the elements in the achene pericarp of the studied taxa has been performed with SEM-EDS. Accordingly, pericarps in taxa include C, Ca, K, Mg, Cl, Si, Na, and S elements. In the taxonomy of the genus Artemisia, the achene morphological characters are very significant characteristics that disclose inter-specific relations among the examined taxa. Moreover, a dichotomous key is offered for the identification of the studied taxa based on achene characters. RESEARCH HIGHLIGHTS: The achenes of Turkish Artemisia taxa have been examined in depth. The morphological characteristics of achenes of Turkish Artemisia taxa have been studied using SEM and LM for the first time and debated the systematic practice of these characters. The elemental content of the achene pericarp has been systematically evaluated for the first time.


Assuntos
Artemisia , Turquia , Microscopia , Microscopia Eletrônica de Varredura
18.
Lasers Med Sci ; 39(1): 64, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363355

RESUMO

The present work aimed at assessing chemical, topographical, and morphological changes induced by Nd : YAG laser treatment of dental enamels by means of energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Fifteen human enamel specimens were obtained, three of samples were kept untreated as a control while the others twelve samples were equally divided into four groups where each group have a three samples according to treating approach as: G1:(untreated);G2: (treated with Nd:YAG laser, 100 mJ/pulse,10 Hz/1064nm); G3(treated with Nd:YAG laser, 500 mJ/pulse, 10 Hz/1064nm); G4(treated with Nd:YAG laser 1000 mJ/pulse, 10 Hz/1064nm), and finally G5(treated with Nd:YAG laser, 1000 mJ/pulse, 10 Hz/532nm) respectively. Beside many craters and cracks, the AFM results showed fractures with depths of 19.23 nm, 174.7 nm, 216.9 nm, 207.4 nm and 156.5 nm and width of 559.2 nm, 833.4 nm, 1115 nm, 695.0 nm, and 5142 nm for all Groups respectively. The highest surface roughness was found in G5 with 111.4 nm while the lowest surface roughness was found in G1 to be 14.3 nm. The inside surface of the fissures was also rough. The SEM micrographs revealed modifications to the morphology. EDS was used to measure the phosphorous (P), calcium (Ca), oxygen (O), and carbon (C) percentages presented in crater areas and their surroundings, Ca, P, O, and C levels were observed to vary significantly at the crater and its rim, a lower percentage of C wt% were realized corresponding to laser treatment of 1000 mJ/Pulse laser energy. However, it was not feasible to recognize a specific chemical arrangement in the craters. It is also concluded that the higher depth and particular edge of ablated part when teeth were irradiated by laser with 1000 mJ/10Hz/1064nm.


Assuntos
Lasers de Estado Sólido , Humanos , Lasers de Estado Sólido/uso terapêutico , Cálcio/análise , Espectrometria por Raios X , Microscopia Eletrônica de Varredura , Esmalte Dentário/química
19.
J Forensic Sci ; 69(3): 1035-1044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332695

RESUMO

Memory effect in firearms that is, the possibility for a weapon to release inorganic particles whose elemental composition depends on its entire shooting history, is responsible for most of the interpretation difficulties encountered in forensic gunshot residue analysis. The presence of residues chemically inconsistent with the last discharged round, the creation of particles having unusual elemental profiles, and the dependence of residue population composition on the collection point are all manifestations of memory effect. The experimental results reported in this paper highlight the ineffectiveness of a wide number of gun cleaning procedures in reducing memory effect. Moreover, the common alternative of discharging batches of rounds having a "new" primer mixture does not fully eliminate the possibility to recover "old" residues at least from the shooter's hands. Two brand new pistols and ammunition having lead-based, leadless and heavy metal free primers were used. Specimens, collected both from the shooters' hands and from cotton targets set nearby the gun muzzle, were analyzed by SEM-EDS and by ICP-OES. After discharging 10's of new ammunitions, the number of old residues ejected from the gun muzzle indeed showed an asymptotic decrease to zero. In spite of this, the number of old residues recovered from the shooter's hands did not follow any predictable trend. These different behaviors suggest that all internal components of a gun, and not just the barrel, play a role in memory effect.

20.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220505, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310939

RESUMO

Environmental variation in the Anthropocene involves several factors that interfere with endocrine systems of wildlife and humans, presenting a planetary boundary of still unknown dimensions. Here, we focus on chemical compounds and other impacts of anthropogenic and natural origins that are adversely affecting reproduction and development. The main sink of these endocrine disruptors (EDs) is surface waters, where they mostly endanger aquatic vertebrates, like teleost fish and amphibians. For regulatory purposes, EDs are categorized into EATS modalities (oestrogenic, androgenic, thyroidal, steroidogenesis), only addressing endocrine systems being assessable by validated tests. However, there is evidence that non-EATS modalities-and even natural sources, such as decomposition products of plants or parasitic infections-can affect vertebrate endocrine systems. Recently, the disturbance of natural circadian light rhythms by artificial light at night (ALAN) has been identified as another ED. Reviewing the knowledge about EDs affecting teleosts and amphibians leads to implications for risk assessment. The generally accepted WHO-definition for EDs, which focuses exclusively on 'exogenous substances' and neglects parasitic infections or ALAN, seems to require some adaptation. Natural EDs have been involved in coevolutionary processes for ages without resulting in a general loss of biodiversity. Therefore, to address the 'One Health'-principle, future research and regulatory efforts should focus on minimizing anthropogenic factors for endocrine disruption. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Sistema Endócrino , Doenças Parasitárias , Animais , Humanos , Anfíbios/fisiologia , Vertebrados , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...